Communications to the Editor

NITROPEPTIN, A NEW DIPEPTIDE ANTIBIOTIC POSSESSING A NITRO GROUP

Sir:

During the course of our screening program for new antibiotics effective against blast of rice, we have recently isolated nitropeptin (1), a dipeptide antibiotic possessing a nitro group, from the culture broth of *Streptomyces xanthochromogenus* 6257-MC₁. The producing strain was isolated from a soil sample collected at Matsushima-cho, Miyagi prefecture, Japan, and was classified as *S. xanthochromogenus* 6257-MC₁ by taxonomic studies and direct comparison with a type strain. This communication describes the isolation, structural elucidation and biological properties of 1.

Fermentation was carried out at 28°C for 72 hours in a 50-liter jar fermentor containing 30 liters of a medium consisting of glycerol 2.5%, peptone 2.0% and CaCO₃ 0.4% (pH 7.2). The maximum titer, 15 μ g/ml, was estimated by the paper disc method using *Pyricularia oryzae* as a test organism. The fermentation broth was filtered with a filter aid and the antibiotic in the filtrate was adsorbed on a column of Amberlite

IRA-401 (OH⁻, 2 liters) and eluted with 0.4 N HCl. The active eluate was neutralized and passed through a column of activated charcoal (300 ml). The effluent was adjusted to pH 2.0, adsorbed on a column of activated charcoal (700 ml) and eluted with 50% aq acetone. The eluate was concentrated, and then applied to a column of DEAE-Sephadex A-25 (Cl-, 600 ml). After washing with water, the antibiotic was eluted with 0.05 M NaCl. The active eluate was desalted by activated charcoal in the same manner as above, and concentrated to dryness. Further purifications were carried out by Diaion CHP-20 and Sephadex G-10 column chromatographies. Lyophilization of the active fraction yielded the sodium salt of 1 (120 mg).

The physico-chemical properties of 1 are summarized in Table 1. Nitropeptin is a watersoluble, acidic compound, and shows on characteristic UV absorption in neutral and acidic solutions. However an absorption peak appears at 242 nm (ε 9,800) in alkaline solution. The molecular formula of 1 was determined to be $C_{11}H_{18}N_3O_7Na$ on the basis of elemental analysis, fast atom bombardment mass spectrum (FAB-MS) and ¹⁸C NMR spectral data.

Acid hydrolysis (6 N HCl, 110°C, 17 hours) of

Appearance	White amorphous powder
MP	$166 \sim 168^{\circ} C (dec)$
$[\alpha]_{\rm D}^{22}$	-27.2° (c 1.0, H ₂ O)
Anal	Found: C 39.02, H 5.93, N 12.08, O 35.02, Na 6.53.
	Calcd for $C_{11}H_{18}N_3O_7Na \cdot \frac{1}{2}H_2O$:
	C 39.29, H 5.65, N 12.50, O 35.71, Na 6.85.
FAB-MS (m/z)	Positive: 328 $(M+1)^+$, 350 $(M+Na)^+$
	Negative: $326 (M-1)^{-1}$
Solubility	Soluble: Water
	Slightly soluble: MeOH, acetone
	Insoluble: Benzene, CHCl ₃
High-voltage	
paper electrophoresis	Rm (glu) 0.67 (pH 6.4, 3,500 V, 15 minutes)
UV	End absorption in H_2O and 0.1 N HCl, 242 nm (ε 9,800)
	in 0.1 N NaOH
IR (KBr) cm^{-1}	3400~3200, 2950, 1660, 1600, 1540, 1390, 1290 and 1140
Color reaction	$+:$ Ninhydrin, H_2SO_4
	-: Sakaguchi
Silica gel TLC (Rf)	Butanol - Acetic acid - $H_2O(2:1:1)$: 0.68
	Butanol - MeOH - $H_2O(4:1:2): 0.32$

Table 1. Physico-chemical properties of nitropeptin sodium salt.

1 gave L-leucine which was identified by NMR, MS and amino acid analysis. Its absolute configuration was established to be L by the optical rotation value, $[\alpha]_D^{22} - 8.0^\circ$ (c 0.3, H₂O). Treatment of 1 with 2,4-dinitrofluorobenzene gave a 2,4-dinitrophenyl (DNP) derivative, and then it was hydrolyzed with 6 N HCl to give DNPleucine which was identified by silica gel TLC in comparison with an authentic sample.

The ¹H signals in Fig. 1 and the ¹³C resonances of 1 are listed in Tables 2 and 3, respectively. The ¹H and ¹³C NMR spectra were analyzed mainly through 2D COSY, ¹³C-¹H shift correlation and ¹H spin decoupling experiments. The ¹H and ¹³C NMR spectra of 1 revealed two sets of signals suggesting the presence of two diastereoisomers in D₂O solution. These spectral data revealed two fragments corresponding to leucine [δ_c 53.3 (53.3)[†], 41.0 (41.0), 25.1 (25.2), 22.4 (22.4), 22.7 (22.7)] and the unknown amino acid [δ_c 57.4 (56.9), 85.9 (86.3), 36.2 (38.9)]. The assignments of carbonyl carbon signals at $\delta_{\rm c}$ 171.2 (171.2), 172.3 (173.4) and 176.9 (176.5) and the relationship between the α' -proton and the carbonyl carbon of the leucine moiety were established by ¹³C-¹H long range selective proton decoupling experiments as shown in Fig. 2.

In order to prove the functional groups represented by X, Y and Z in Fig. 2, the following chemical reactions were carried out. Reduction of 1 with platinum dioxide in aqueous acetic acid gave 2 (Scheme 1) as a mixture of diastereoisomers, secondary ion mass spectrum (SI-MS) m/z 276 (M+1)⁺, Anal Calcd for $C_{11}H_{21}N_{3}O_{5} \cdot 1\frac{1}{2}H_{2}O$: C 43.70, H 7.95, N 13.91; Found: C 43.48, H 7.70, N 13.66. The structure of 2 was determined to be $N-\alpha$ -leucyl- β aminoglutamic acid from its ¹³C NMR spectral data [D₂O, δ_c : CH₃, 22.9 (22.8), CH₃, 21.8 (22.0); γ-CH, 25.0 (25.4); β-CH₂, 40.7 (40.7); α-CH, 53.2 (53.1); α' -CH, 53.6 (55.1); β' -CH, 50.2 (49.8); γ'-CH₂, 34.5 (35.2); C=O, 168.4 (168.3), 172.1 (171.8), 175.6 (175.9)]. Thus, the signal at δ_c 85.9 (86.3) in 1 was replaced by a resonance at δ_c 50.2 (49.8) ascribed to an amino methine in 2. Therefore, it was deduced that nitropeptin had a nitro group at the β' -position in the unknown amino acid residue. The 13C chemical shift of the β' -methine carbon in 1 is in agreement with that of the nitromethine group in 2-

Fig. 1. 400 MHz ¹H NMR spectrum of nitropeptin.

[†] Values in parenthesis denote ¹³C chemical shifts due to the minor isomer.

	$\operatorname{In}\mathrm{D}_2\mathrm{O}$		- In D O I NoOD
Proton	Major isomer	Minor isomer	
CH ₃	0.99 (3H, d, J=6.0)	0.99 (3H, d, J=6.0)	0.88 (3H, d, J=6.2)
CH_3	1.00 (3H, d, J=6.0)	1.00 (3H, d, J=6.0)	0.92 (3H, d, <i>J</i> =6.2)
7-CH	1.66 (1H, m)	1.66 (1H, m)	1.67 (1H, m)
β -CH ₂	1.76 (2H, m)	1.76 (2H, m)	1.46 (2H, m)
α-CH	4.10(1H, t, J=7.6)	4.15 (1H, t, J=7.4)	3.42 (1H, t, $J=7.2$)
γ' -CH ₂	2.57 (1H, dd, $J=17.0, 3.0$),	2.71 (1H, dd, $J=16.4, 5.0$),	3.06 (1H, d, <i>J</i> =16.2),
2	3.02 (1H, dd, $J=17.0, 12.2$)	2.94 (1H, dd, J=16.4, 10.2)	3.44 (1H, d, <i>J</i> =16.2)
β' -CH	5.44 (1H, m)	5.47 (1H, m)	
α' -CH	5.23 (1H, d, J=3.2)	4.92 (1H, d, <i>J</i> =4.8)	5.38 (1H, s)

Table 2. ¹H NMR chemical shifts of nitropeptin (ppm, J; Hz).

Observed at 400 MHz.

Table 3. ¹³C NMR chemical shifts of nitropeptin (ppm).

<u> </u>	In D ₂ O		
Carbon	Major isomer	Minor isomer	- III $D_2O + NaOD$
α-CH	53.3	53.3	54.4
β -CH.	41.0	41.0	44.3
γ-CH	25.1	25.2	25.3
CH ₃	22.4,	22.4,	22.3,
U U	22.7	22.7	23.5
α' -CH	57.4	56.9	56.8
β'-CH	85.9	86.3	120.1
$\dot{\gamma}'$ -CH ₉	36.2	38.9	39.4
-NHCO-	171.2	171.2	177.9
)CHCO-	172.3	173.4	175.6
-CH ₂ CO-	176.9	176.5	177.9

Observed at 100 MHz.

Fig. 2.

¹³C NMR chemical shifts (ppm). (): Minor isomer.

nitro-2-methylpropane¹⁾ (δ_e 85.2). Treatment of 1 with 2,4-dinitrofluorobenzene and sub-

sequent methylation with methyl iodide - potassium carbonate in dimethylformamide solution gave a DNP-derivative dimethyl ester (3), fast atom bombardment-high resolution mass spectra (FAB-HRMS) m/z obscured: 500.1622 (M+1)⁺, Calcd for $C_{10}H_{26}N_5O_{11}$: 500.1621, and a dehydro DNP-derivative dimethyl ester (4), FAB-MS m/z 453 (M+1)⁺; mp 159°C; $[\alpha]_{D}^{20}$ +96.0 (c 0.5, MeOH); Anal Calcd for C₁₉H₂₄N₄O₉: C 50.44, H 5.31, N 12.39; Found: C 50.60, H 5.20, N 12.52. The structure of 4 was determined to be N-DNP-leucyl-2-amino-2-pentenedioic acid methyl ester from its ¹³C NMR spectrum data $[CDCl_3, \delta_e: CH_3, 21.6, 22.9; \gamma$ -CH, 25.2; β -CH₂, 33.9; γ' -CH₂, 42.0; OCH₃, 52.4, 52.8; α -CH, 57.7; $\alpha' > C =$, 126.9; β' -CH=, 128.4; C=O, 164.0, 169.8, 170.5; DNP, 147.2 (C-1), 131.7 (C-2), 124.0 (C-3), 137.6 (C-4), 130.7 (C-5), 114.7 (C-6)]. From these results, the X, Y and Z functions of 1 were deduced to be a hydroxy, a nitro and a hydroxy group, respectively.

The ¹H and ¹³C NMR spectra measured in D_2O solution added with NaOD supported the presence of the nitro group in 1. As listed in Tables 2 and 3, the β' -methine protons corresponding to the signals at $\delta_{\rm H}$ 5.44 (5.47) disappeared, and the chemical shift of the β' -methine carbon changed from δ_c 85.9 (86.3) to δ_c 120.1. In addition, all signals were simplified in ¹H and ¹³C NMR spectra to be ascribed to the acinitro form (5) of 1 in Scheme 1. In agreement with this structure, 1 showed a UV absorption at 242 nm (ε 9,800) in 0.1 N NaOH solution, whereas no characteristic UV absorption was observed in neutral and acidic solution. These phenomena of NMR and UV spectra observed in alkaline solution were reversed by neutralization. The signal at δ_c 120.1 in 5 was assigned to the unsaturated carbon of an aci-nitro group, and UV absorption at 242 nm is derived by the unsaturated bond of the aci-nitro group. The slow exchange of the β' -proton of 1 in D_2O solution (50% exchange in ca. 5 hours) and the presence of 1 as a diastereomeric mixture (vide supra) are explained in terms of this nitro-acinitro tautomerism.

From the results described above, the structure of nitropeptin was determined to be N-Lleucyl- β -nitroglutamic acid as depicted in Scheme 1.

Among known antibiotics, bovinocidin²⁾, 1-amino-2-nitrocyclopentanecarboxylic acid^{3,4)} and antibiotics^{5~0} containing nitro sugar were reported as antibiotics possessing an aliphatic nitro group. Therefore, nitropeptin is a very unique compound among the natural products.

Nitropeptin showed little antibacterial activity on nutrient media. It exhibited activity against *Escherichia coli* K-12 on a synthetic medium, but the activity was decreased by supplementation of L-glutamine. From these biological and structural properties, the compound may be regarded as an antimetabolite of glutamine. The protective effect against the rice plant desease caused by *Pyricularia oryzae* was observed in a green house test (94% at 200 ppm). The LD₅₀ for nitropeptin in mice was 50~100 mg/kg (iv).

Acknowledgments

The authors are grateful to Dr. MITSUTAKA NATSU-ME of Research Foundation Itsuu Laboratory for his kind advice. We also wish to thank collaboration to Pharmaceutical Research Laboratories of Meiji Seika Kaisha, Ltd. for the *in vivo* and *in vitro* studies in this work. Kazunori Ohba Hiroshi Nakayama Kazuo Furihata Akira Shimazu Toyosige Endo[†] Haruo Seto^{*} Noboru Ōtake

Institute of Applied Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan

(Received December 18, 1986)

References

- STOTHERS, J. B.: Carbon-13 NMR Spectroscopy. p. 155, Academic Press, New York, 1972
- ANZAI, K. & S. SUZUKI: A new antibiotic bovinocidin, identified as β-nitropropionic acid. J. Antibiotics 13: 133~136, 1960
- [†] Present address: Kyoritu College of Pharmacy, 1-5-30 Shibakohen, Minato-ku, Tokyo 105, Japan.

- BRIAN, P. W.; G. W. ELSON, H. G. HEMMING & M. RADLEY: An inhibitor of plant growthproduced by Aspergillus wentii Wehmer. Nature 207: 998~999, 1965
- BURROWS, B. F. & W. B. TURNER: 1-Amino-2-nitrocyclopentanecarboxylic acid. A new naturally-occurring nitro-compound. J. Chem. Soc. (C) 1966: 255, 1966
- MIZSAK, S.A.; H. HOEKSEMA & L.M. PSCHIGODA: The chemistry of rubradirin. II. Rubranitrose. J. Antibiotics 32: 771 ~ 772, 1979
- 6) TAMAOKI, T.; M. KASAI, K. SHIRAHATA & F. TOMITA: Tetrocarcins E₁, E₂, F & F-1, new antibiotics. Fermentation, isolation and characterization. J. Antibiotics 35: 979~984, 1982
- MALLAMS, A.K.; M.S. PUAR & R.R. ROSSMAN: Kijanimicin. 1. Structures of the individual sugar components. J. Am. Chem. Soc. 103: 3938~ 3940, 1981
- KAWAI, H.; Y. HAYAKAWA, M. NAKAGAWA, K. IMAMURA, K. TANABE, A. SHIMAZU, H. SETO & N. ŌTAKE: Arugomycin, a new anthracycline antibiotic. J. Antibiotics 36: 1569~1571, 1983
- ISHII, K.; Y. NISHIMURA, H. NAGANAWA, S. KONDO & H. UMEZAWA: The structure of decilorubicin. J. Antibiotics 37: 344~353, 1984